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The paper presents the dynamic compound wavelet method �dCWM� for modeling the time evolution of
multiscale and/or multiphysics systems via an “active” coupling of different simulation methods applied at
their characteristic spatial and temporal scales. Key to this “predictive” approach is the dynamic updating of
information from the different methods in order to adaptively and accurately capture the temporal behavior of
the modeled system with higher efficiency than the �nondynamic� “corrective” compound wavelet matrix
method �CWM�, upon which the proposed method is based. The system is simulated by a sequence of temporal
increments where the CWM solution on each increment is used as the initial conditions for the next. The
numerous advantages of the dCWM method such as increased accuracy and computational efficiency in
addition to a less-constrained and a significantly better exploration of phase space are demonstrated through an
application to a multiscale and multiphysics reaction-diffusion process in a one-dimensional system modeled
using stochastic and deterministic methods addressing microscopic and macroscopic scales, respectively.
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I. INTRODUCTION

The scientific and engineering problems that span and
couple multiple temporal and spatial scales are usually ana-
lyzed within the framework of multiscale methods. The effi-
cacy of these techniques relies on their ability to combine
appropriate information while obeying conservation laws
when different scale-specific submethods are coupled. Many
numerical frameworks have been proposed explicitly to-
wards this, such as the heterogeneous multiscale method
�HMM� �1�, quasicontinuum method �2�, equation-free
coarse-grained multiscale method �3�, coarse-grained mo-
lecular dynamics �4�, molecular-atomistic ab initio dynamics
�MAAD� �5�, wavelet-based compound wavelet matrix
�CWM� �6–9�, and parallel-in-time method �10�. Of particu-
lar interest is the CWM method, which takes advantage of
the inherent capabilities of wavelets bases to represent physi-
cal phenomena in a multiscale fashion.

The ability of wavelets to separate scale information ef-
fectively through the construction of local orthogonal basis
functions makes them invaluable in the examination of local,
global, and scalewise properties of any data set �or signal�
that requires multiresolution analysis. As examples, such
data could represent fractals, multifractals, turbulence pat-
terns, or earthquakes �11–13�. In such applications, typically,
wavelets operate on a signal obtained from a method re-
stricted to a single discretization in time and/or space. CWM
differs from such multiresolution techniques in that it bridges
solutions obtained from multiple methods operating on dif-
ferent discretizations in time and space to yield a composite
multiscale representation, while using wavelets as the basis.
Utilizing wavelets as a multiscale tool rather than a pure
multiresolution tool makes the CWM approach a unique as
well as a powerful technique for coupling disparate simula-
tion methods that address the same process, albeit at different
levels of accuracy, or, equivalently different levels of theory.

CWM also differs from up-scaling techniques �14,15� used
in adaptive bridging of scales, given that in the CWM frame-
work, physical phenomena are examined using two or more
different methods at their respective scales not necessarily
based on the same variables or in the same mathematical
form.

In its original formulation, CWM was conceived as a mul-
tiscale tool for combining short-time �and/or small spatial
domain� fluctuations that could only be obtained from com-
putationally expensive fine-scale methods, with the large-
scale long-time �and/or large spatial domain� mean behavior
of coarse-scale method�s�, while assuming stationarity for
the fluctuations in the overall trajectories. It has been applied
to various multiscale phenomena such as grain-growth and
microstructure evolution �6�, heterogeneous porosity and in-
clusions �7�, dispersion problems �8�, and diffusion from a
reactive boundary �9�; in these studies, the fine-scale and
coarse-scale information were combined via a compound
wavelet matrix to yield the coupled multiscale behavior of
the system over the entire extent of space and time. In other
words, CWM was used as a corrective tool, involving the
transfer of fine-scale fluctuations of the accurate method on
to the coarse-method trajectory. In this paper, the CWM is
further generalized to serve as an accurate predictive tool, by
extending it to take into account the interaction of the fine-
and coarse-scale methods as the simulated system evolves in
phase space.

The proposed dynamic CWM �dCWM� method extends
the CWM approach by incorporating active coupling of dif-
ferent monoscale simulation methods, resulting in a dynamic
evolution of the system under study. In other words, the sys-
tem is simulated by a sequence of temporal increments
where the CWM solution on each increment is used as the
initial conditions for the next. Another equally important fea-
ture of this work is the improvements made to the com-
pounding methodology, making it capable of projecting the
shorter-fine trajectory in time, based on the relative magni-
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tudes of the coarse-method and fine-method wavelet coeffi-
cients as explained in the following sections. The consequent
advantages of using the dCWM method are illustrated via a
“simple” one-dimensional �1D� model of a two-species
reaction-diffusion process that is represented by two distinc-
tive methods differing in their ability to describe the physics
of the reaction-diffusion process.

II. MODELS AND METHODS

A. Wavelet bases for multiscale problems

A discrete function can be hierarchically transformed into
wavelet space by using discrete wavelet transforms �DWT�
�16–20� via a series of “scale decompositions” with each
stage of decomposition representing a level of description of
the function specific to that scale. The transforms involving a
set of wavelet filters in the form of linear convolution opera-
tors are applied hierarchically first to the full data vector
�assuming the discrete function to be a 1D data vector of
length 2N�, then to a smoother vector of length 2N−1, then to
a vector of length 2N−2, and so on and so forth �as shown in
Fig. 1�a�� until only a trivial number of smooth components
�scaling or mother-function coefficients� remain; the number
of scaling coefficients depend on the number of wavelet fil-
ters chosen. At any scale, the “hi” components of the trans-
formed vector �Fig. 1�b��, which are essentially decorrelated,

represent the wavelet coefficients corresponding to that scale,
and characterize the scale-specific fluctuations inherent to the
original function. The inverse transform is the exact reverse
of the above process, with the wavelet operator �analysis
operator� replaced by its inverse �synthesis operator�. Differ-
ent boundary conditions �e.g., periodic, fixed, zero, or on the
interval�, are implemented by modifications of the appropri-
ate operator terms �20�.

Every scale-decomposition stage results in two sets of
components: The smooth �or coarse� and the fine compo-
nents, each representing a localized “moving” average of the
function �in wavelet space� with the fine components being
regarded as the “true” wavelet coefficients corresponding to
the given scale. For convenience, at each stage, the data are
rearranged as shown in Fig. 1�b�. Since the hierarchical de-
composition at each stage acts only on the smoother compo-
nents of the previous stage, only very “coarse” information is
available at the final stages of the wavelet transform proce-
dure.

The given function �or signal� can be examined at any
given range of scales simply by retaining the wavelet trans-
form �WT� coefficients corresponding to the chosen scales
and setting all other coefficients equal to zero and then se-
quentially reconstructing via the inverse transform to obtain
a modified signal; this method is sometimes referred to as the
padding technique. Extending these concepts, coupling of
two different signals in wavelet space can be done by first
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FIG. 1. �a� Stage by stage wavelet decompo-
sition of a 2N vector. At each stage, the data vec-
tor is convolved with two kinds of wavelet filters
�low-pass and high-pass� resulting in two sets of
wavelet-transformed data. �b� Illustration of the
first stage of wavelet decomposition. The initial
convolution operation is followed by rearrange-
ment. Here h and l represent the high-pass and
low-pass components, respectively.
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identifying their overlapping scales �spatial and temporal�
and then substituting corresponding wavelet coefficients
from each signal into a compound wavelet matrix �CWM�
that can be inverted to provide a hybrid signal that has the
desired characteristics of both signals over the union of
scales of the two signals. The identification of the overlap is
critical to the CWM method and the extent of overlap de-
cides the relative accuracy of the hybrid signal as explained
below.

B. Compounding methodology for coupling scales:
Forming the CWM

Earlier implementations of CWM assumed no deviations
in the overall trajectories as predicted by the different scale-
specific methods modeling the given phenomenon. In this
paper, the methodology presented is further generalized by
taking into account any possible deviations between the dif-
ferent trajectories, thereby enhancing the ability to predict
the true evolution of the system in phase space.

Without the loss of generality, the methodology will be
described based on two temporally varying 1D signals, one
representing the high-resolution, short-time trajectory—the
fine signal, while the other corresponds to a coarse-resolution
approximation obtained over a much longer time interval—
the coarse signal. Let R denote the ratio of the size of the
coarse ��tc� over the fine ��tf� time steps, and Nc and Nf

represent the number of coarse and fine data points, respec-
tively. The following steps result in a compound signal that
contains essential information from both signals.

�1� Coarse signal interpolation. Depending on R, the
coarse signal is interpolated in order to obtain a new signal
with a larger set of data points �Ic�, with the time interval
between successive data points equaling �tf. Note that Ic
equals the product of R and Nc.

�2� Wavelet decomposition. The wavelet transforms of the
coarse and fine signals are performed until a trivial number
of mother-wavelet or scaling coefficients �SN� are left. If
SN=8 �23�, then pc−3, and pf −3 scale decompositions are
carried out on the coarse and fine signal, yielding Ic−8 and
Nf −8 WT coefficients, respectively, where pf and pc are de-
fined in Eq. �1�:

Ic = 2pc,

Nf = 2pf . �1�

�3� Selection and identification of overlapping scales.
Overlapping scales refer to common or equivalent scales be-
tween the two signals; given that 2pc coarse data points and
2pf fine data points are sampled at the same rate �i.e., size of
respective time steps are equal�, the first pf −3 scale decom-
positions for each signal are equivalent and yield 2�pc−n� and
2�pf−n� coefficients, respectively, at the nth scale decomposi-
tion �see Fig. 2�.

�4� Prolongation. At all overlapping scales, the fine WT
coefficients are replicated to ensure consistency in the num-
ber of coarse and fine WT coefficients. The number of rep-
lications Mp at a specific scale is given by Mp= Ic /Nf and
represents periodic repetitions of the fine fluctuations at ev-

ery scale with the inherent assumption that the fluctuations
are quasistationary over the period of coupling. The primary
role of this step is to set the stage for replacement of a ma-
jority of the coarse coefficients by the repeated fine coeffi-
cients to enable the transferability of all fine information at
every overlapping scale.

�5� Multiscaling via mixing and scaling of coefficients.
This stage enables an “intelligent” extension of the fine sig-
nal via appropriate selection of relevant wavelet coefficients
at all scales from both signals to form a compound wavelet
matrix �or vector in this case�: In order to facilitate explain-
ing the merging of coefficients, we will use for the coarse
signal a smooth logarithmic function consisting of 1024
points �Fig. 3�, while the shorter fine signal is comprised of
the first 256 data points of the coarse signal with added white
noise �via random numbers�. Figure 4 presents �i� the WT of
the coarse signal, �ii� WT of the first 256 points of same
coarse signal �short-coarse�, and �iii� WT of the fine signal;
the above transforms use the symmetry-preserving bior-
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thogonal CDF�4,6� wavelet filters with on-the-interval
boundary conditions �20�. Specifically, in Fig. 4, the values
of the various coefficients at all scales of decomposition are
given �except the first scale�.

The following are clearly evident from Fig. 4: �i� The
initial few and the final few coefficients of all the three sig-
nals at every scale are significantly different in magnitude
from the rest of the coefficients, �ii� excluding the final few
coefficients, the 2�pf−n� coefficients of the shorter coarse sig-
nal and the first 2�pf−n� coefficients of the larger coarse signal
�where n refers to the nth scale decomposition, and 2pf

=256� at equivalent scales are identical, and �iii� the fine
coefficients are slightly larger in magnitude than the corre-
sponding short-coarse coefficients at every scale.

The difference in magnitude between the initial �or final�
few coefficients and the rest is due to the imposition of
boundary conditions, which contribute significantly to the
net magnitude of the boundary �i.e., the initial and final few�
coefficients �20�. The fact that there is a one-to-one match
between the short-coarse and the corresponding long-coarse
coefficients �barring the final few coefficients� at every
equivalent scale is a consequence of the moving average rep-
resentation characteristic of wavelets. The deviations be-
tween corresponding short-coarse and fine coefficients are a
measure of the fluctuations �in this case, the white noise�
inherent to the fine signal as also any possible deviations in
the overall trajectories of the coarse and fine trajectories �in
this case, the overall trajectory is the same�.

While boundary conditions do change the initial and final
coefficients at each scale significantly, it has to be noted that
when both short and long coarse signals are wavelet trans-
formed, the initial coefficients are the same, while it is only
the final coefficients that differ; this is due to the fact that the
same domain is sampled via the convolution operation to
yield the initial coefficients while the longer-time data is not
available to the shorter signal resulting in differences in the
magnitudes of the final boundary coefficients.

The repetition of fine coefficients at overlapping scales,
replicates the essentially uncorrelated fluctuations associated

with the fine signal over the entire domain of the long, coarse
signal. This repetition has to be done with care to �i� prevent
any unphysical behavior that could arise due to the periodic
appearance of the boundary coefficients at each scale, while
�ii� ensuring appropriate boundary conditions are still im-
posed. One could identify these boundary coefficients either
from the knowledge of the extent �length� of the boundary
elements in the analysis and synthesis matrix or by adopting
an empirical procedure: At each scale, the deviation in mag-
nitude between corresponding short-coarse and short-fine co-
efficients averaged over all coefficients �except for the first
and last� is calculated. The number of boundary coefficients
is identified as the number of successive coefficients greater
in magnitude than the average deviation calculated for that
given scale. Typically, for the interval boundary conditions
used herein, the first three and the last three coefficients rep-
resent the boundary coefficients.

After replication, any fine coefficient that is greater in
magnitude than the average deviation is replaced by the cor-
responding long-coarse coefficient, except at certain loca-
tions, as explained below.

For clarity, consider the second equivalent scale decom-
position of the long-coarse �i.e., coarse� and short-coarse sig-
nal �Figs. 4�g��. Only the first 61 �=64−3� coefficients are
identical, while the 62nd, 63rd, and 64th coefficients are ob-
viously different, though, in fact, the ratios of the respective
boundary coefficients �i.e., ratio of 254–256 of long-coarse
to the 62–64 of short-coarse� are very similar �analogous
trends are true for all other equivalent scales too�. In order to
transfer the entire spectrum of fine information available at
this scale, and to ensure that only the true fine signal fluc-
tuations and trends are periodically replicated, an initial rep-
etition of all �in this case Mp=4� fine coefficients; next the
62–67, 126–131, and 190–195 of the repeated fine coeffi-
cients �corresponding to the boundary coefficients� are re-
placed by the equivalent coarse coefficients that are scaled
by a multiplicative factor; this factor equals the ratio of the
sum of absolute magnitudes of the short-fine coefficients to
the sum of absolute magnitudes of the short-coarse coeffi-
cients, with the boundary coefficients being excluded in the
respective sums.

Keeping in mind that the ratio of the end boundary con-
ditions of the respective signals at each scale are comparable,
the 254th, 255th and 256th fine coefficients are scaled by a
factor Es�1,2 ,3�, where Es�1,2 ,3� are the ratios of 254th
long-coarse to 62nd short-coarse, 255th to 63rd and 256th
long-coarse to 64th short-coarse coefficients, respectively. In
a similar fashion, the above algorithm is repeated for all
other overlapping scales too.

After appropriate repetitions and replacements at every
overlapping scale, 32 remaining coarse coefficients are avail-
able �out of which, the first eight represent the scaling coef-
ficients� in addition to the eight remaining scaling coeffi-
cients of the fine signal. Since no equivalent scales are
available, the remaining 24 �9–32� of the 32 coarse coeffi-
cients are retained; in contrast, the first eight coefficients of
the compound matrix are chosen to equal scaled values of
the corresponding eight scaling coefficients of the fine signal,
with the scaling factor similar to the definition of Es in the
previous paragraph.
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FIG. 3. Coarse and fine logarithmic signals used for explaining
the dCWM process. The inset figure represents the entire coarse
signal.
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FIG. 4. Magnitude of WT coefficients at different stages �excluding the first stage� of decomposition of a 1024 data-set logarithmic signal
as given in Fig. 3. Except for the initial and final three coefficients, note that the short-coarse coefficients coincide with the long-coarse
coefficients and are always found right on top of the impulses that represent the long-coarse coefficients.
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This method of repetition, scaling and replacement of the
coefficients, enforces transferability of almost all fine infor-
mation �excepting the repeated boundary coefficients�, while
ensuring an “informed” modification of the end boundary
coefficients and the scaling coefficients, which combine in
tandem to enable the suitable extension of trends exhibited
by the short-time fine trajectory.

�6� Compounding. The selected WT coefficients are as-
sembled to form a compounded matrix �vector in this case�

that has both coarse and fine WT coefficients, ready for in-
version.

�7� Reconstruction. The hybrid signal is now obtained via
a series of convolution operations involving the compound
matrix �vector� and the synthesis matrix.

The relative number of overlapping scales affects the
quality of the compounding; larger number of overlap scales
leads to a better description of the fine-signal features, while
a decrease in the number of overlap scales with respect to the
total number of scales leads to reduction in the accuracy of
the description of fine-signal features.

An important as well as a distinguishing feature between
the previous implementations of CWM and the concepts dis-
cussed here is the rescaling of the eight mother-wavelet co-
efficients by the respective Es. This ensures that the resultant
compounded trajectory represents a logical projection of the
shorter-fine trajectory extended in time consistent with the
short-time behavior of the fine and coarse systems �while
still retaining all fine-scale features�, in contrast to the
straightforward imposition of the fine-trajectory fluctuations
onto the coarse-trajectory as was proposed in the earlier
CWM methods.

coarse Nc

fine Nf

1≤ n ≤ N

Cn CWM

FIG. 5. �Color online� Illustration of the dCWM algorithm.

FIG. 6. �a� and �b� represent the fine-method variation in concentration of species A and B, respectively, with time. Note the fluctuations
in the fine signal. �c� and �d� represent the time variation in concentration of species A at nodes�50 and 100, respectively. The insets
illustrate the variation in concentration within a much narrower period of time. Note: y-axis scale is not constant across the plots.
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C. Dynamic-CWM (dCWM) approach

The dCWM method extends the CWM approach to enable
the concurrent coupling of different scale-specific methods
by dynamically combining the fine and coarse simulation
methods over successive subintervals �dynamic updates� to
obtain the compound trajectory. At each dynamic step, the
fine and the coarse trajectories are coupled via CWM, and
the resulting end point of the compound signal in trajectory
space becomes the starting point �initial condition� for com-
puting the next set of trajectories respectively; this procedure
is then repeated for the desired number of intervals as illus-
trated in Fig. 5. dCWM has the advantage of inherently cou-
pling the dynamics of each method, in addition to lending
further stochasticity to the compound trajectory, which could
lead to a better exploration of the trajectory-space. Further-
more, in the earlier formulations, it was implicitly assumed
that the fluctuations obtained from the fine signal, which was
evaluated over much shorter time, was representative of fluc-
tuations occurring over a much longer duration. This is not
necessarily true as the magnitude as well as the nature of
fluctuations can and in general does change as the system
evolves. This is overcome in the dCWM approach, since the
fine method is employed at various stages of the evolution of
the system. At the same time, the advantages of the CWM
method are retained, without any measurable increase in
computational expense.

D. Model reaction-diffusion system

As a model system, two species A and B that participate
in a first-order reversible reaction occurring at a surface as
given in Eq. �2� are considered:

A↔
kba

kab

B . �2�

The surface represents the boundary of a semi-infinite posi-
tive half space, with the half-space suitably discretized to
handle diffusion of both species to and from the reactive
surface. For convenience, the two reaction rates kab and kba
are set to equal unity, and the initial concentration of A at the
reactive surface is chosen to be much larger in order to bias
the forward reaction to be more active at the initial stages of
the diffusion-reaction process. Further, initial concentration
of both species is set to zero everywhere other than at the
reactive surface. Our numerical model of the system is 1D in
space, such that the diffusion domain is discretized into line
increments and nodes, and the reactive surface is represented
by a single boundary node. The infinite extent of the diffu-
sion domain is approximated by choosing a sufficiently large
length and large number of nodes such that for the duration
of the simulations, there is no change in concentration of
species at nodes far from the reactive boundary and that con-
centration remains equal to zero.

Two levels of description �coarse and fine� are used. The
accurate “fine” method employs the stochastic kinetic Monte
Carlo �KMC� method �21� in conjunction with finite differ-
ences to simulate the chemical reaction at the reactive
boundary and diffusion, respectively, while using relatively
smaller time increments as dictated by KMC. In contrast, the

coarse method models both reaction and diffusion determin-
istically using much larger time increments, thereby address-
ing much larger temporal dimensions, in a less precise fash-
ion. In contrast, for simplicity, both coarse and fine spatial
dimensions as well as spatial discretizations are taken to be
the same.

Using an explicit Euler scheme, the diffusion equation
�Eq. �3�� for species diffusion is solved numerically, where
Cs and Ds represent the species concentration ��A� and �B��
and their respective diffusion constants. The size of the time
step for the fine method is obtained from KMC calculations
�described below�, while the coarse time step is chosen to be
a multiple of the fine time-step size. The flux of the diffusing
species is set to zero at the boundary node �i.e., at the reac-
tive site�

�CS

�t
− DS�

2CS = 0. �3�

In the fine model, the occurrence of the two reactions �Eq.
�2�� at the reaction site is determined stochastically via KMC

FIG. 7. �a� and �b� represent the coarse-method variation in
concentration of species A and B, respectively, with time. The insets
illustrate the variation in concentration within a much narrower pe-
riod of time.
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based on Gillespie’s stochastic simulation algorithm �21�.
The reaction times for both reactions are given by

�tab = − log�1 − R1�/�A�kab, �4�

�tba = − log�1 − R2�/�B�kba, �5�

where R1, and R2 are distinct numbers obtained from a uni-
form random number distribution and �A� and �B� represent
the atomic and molecular concentrations of the respective
species. The occurrence of either one of the reactions is de-
cided by the minimum of the two reaction times as given by
the following equations. If

�tab � �tba,
�A� = �A� − 1,

�B� = �B� + 1,
�6�

while if

�tba � �tab,
�A� = �A� + 1,

�B� = �B� − 1.
�7�

Next, the smaller of the two times is chosen to be the size of
the time step for solving the diffusion equation. If the result-
ant time step size ��t� is found to be incompatible with the

Courant condition for numerical stability of the diffusion
equation, i.e., if �t��x2 /2DS, where �x is the size of the
finite difference element, �t is then subdivided into smaller
time steps as follows:

�t = nt�t� + dt�,

nt = int��t/�t�� , �8�

where �t�=�x2 /2DS.
At every dynamic step, the fine simulation is propagated

for Nf time steps and a resultant variation in concentration of
the two species at all nodes is obtained as a function of time.
Keeping in mind that KMC results in unequal spacings in
time, a spline interpolation routine is invoked to get the con-
centration variation as a function of equally spaced time
steps ��tf�. Once �tf is obtained, �tc is evaluated �=R�tf�
and the coarse signal is propagated for Nc time steps.

In the coarse simulation, the concentration of each species
at the reaction site is obtained deterministically in a straight-
forward fashion from the respective reaction rates �Eq. �9��
using a finite difference scheme. Once the coarse and fine
responses are obtained, the steps enumerated in the section

FIG. 8. Time-variation in concentration of species A for Mp=8 and different values of Nf and Ndyn such that their product is constant.
The insets illustrate the variation in concentration within a much narrower period of time.
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on CWM is used to form the compounded matrix �vector�,
with which the compound trajectory for the given dynamic
step is obtained, with the final concentrations of each species
at all nodes being the starting concentrations for the next set
of coarse and fine calculations:

A�t + �t� = A�t� − kabA�t��t + kbaB�t��t ,

B�t + �t� = B�t� + kabA�t��t − kbaB�t��t . �9�

III. RESULTS AND DISCUSSIONS

A principal objective of this work is to examine and
present the advantages of using the dCWM framework for
multiscale simulations such as the 1D reaction-diffusion
problem described above. The model system under study is
made simple enough, so that a stochastic “fine” simulation of
the reaction-diffusion process �i.e., until the system attains
chemical equilibrium�, is possible. Thus one can benchmark
and quantify the ability of the dCWM framework to emulate
the multiscale behavior of the system.

As a first step, the problem is modeled using the �i� sto-
chastic fine method and the �ii� deterministic coarse method.

In each case, the number of nodes �i.e., extent of spatial
discretization� equaled 1000 and the size of each node was
0.0625 in arbitrary units of length �l�; note that, in addition,
time was also expressed in arbitrary units �t�. Thus the units
of concentration are expressed as atoms/l, while the units of
the diffusion constant are expressed as l2 / t. The initial con-
centration of �A� and �B� at the reactive site was set to 2500
and zero, respectively, while the respective concentrations at
all other sites were identically set to zero. The diffusion con-
stant of both species was chosen to be the same and equaled
0.01. Figure 6�a� and 6�b� present the long-time variation in
concentration of �A� and �B� at the reactive site as obtained
from the fine method �KMC+ finite differences�; the simula-
tion was carried out until there was a net saturation in the
respective concentrations, though there was still the persis-
tent presence of fluctuations in both trajectories. To achieve
equilibrium 65 536 time steps were used, with the spline-
interpolated time-step size equaling 5.66�10−3t �total time�
371.0 t�. The overall trend �i.e., the mean trajectory� was
independent of the choice of the random-number seed, while
there were very minor differences in the occurrence of fluc-
tuations for different random-number seeds. Also, the
amount of fluctuations greatly diminished with distance from
the reaction site �Figs. 6�c� and 6�d�� and in addition, far

FIG. 9. Time variation in concentration of species B for Mp=8 and different values of Nf and Ndyn such that their product is constant.
The insets illustrate the variation in concentration within a much narrower period of time.
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away from the reactive site, the concentrations essentially
remained zero. As a study in contrast, a full deterministic
simulation was carried out for the same number of time steps
and the same time-step size as that of the fine method.
Clearly, as evident from Figs. 7�a� and 7�b�, the fluctuations
characteristic of the fine method were absent from the re-
spective coarse trajectories.

Having the results at both ends of the scale spectrum, i.e.,
the results as obtained using the accurate stochastic fine
method and the purely deterministic coarse method, attention
is turned to examining the ability of the dCWM approach to
model the reaction-diffusion process accurately. The dCWM
method depends critically on the choice of Nf and the num-
ber of dynamic updates �Ndyn�. Ideally, as the system evolves
in time, the fine simulation has to be invoked as frequently as
possible to enable sampling at various points in phase space,
while Nf has to be large enough to capture the stationary
fine-scale fluctuations as and when the fine simulation is in-
voked. Since Nf �Ndyn represents the total number of fine
computations, it would be judicious to maximize Ndyn and
reduce Nf as much as possible to limit any redundancy in the
fine computations, while still being able to capture all essen-
tial physics inherent to the fine simulation at different stages
of the simulation for a given number of fine computations.
Equally important choices are that of Mp �=Ic /Nf� in tandem
with Nc, as implicitly, it is assumed that the fluctuations cap-
tured over Nf time steps are stationary over the time equaling
Mp�Nc. In order to comprehensively characterize the im-
portance of the different simulation parameters as well as
also to aid comparison between the dCWM and the above-
discussed stochastic and deterministic results, the following
were investigated: �i� The interplay between Nf and Ndyn
for a given number of total fine �Nf �Ndyn� and coarse �Nc

�Ndyn� computation steps and �ii� the importance of the rela-
tive number of scales beyond overlap �or equivalently Mp�
for a given Nf. Note that for all investigations, the compound
trajectory obtained via the dCWM method consisted of
65536 points—same as the pure coarse and fine trajectories.

As a first part to this study, the interplay between Nf and
Ndyn for a fixed value of Mp and a given number of fine
computation steps �Nf �Ndyn� is investigated. Obviously, Nc

equals Mp�Nf. Figures 8 and 9 illustrate the variation of the
two concentrations at the reactive site for the specific value
of Mp=8 and different combinations of Nf and Ndyn, while
Table I gives the list of values of Nf, Ndyn, and Nc used in
Figs. 8 and 9. It has to be pointed out that the time-step size
for the coarse method was set to equal that of the spline-
interpolated fine method time-step size at each dynamic step,
thereby avoiding the need for interpolation of the coarse in-
formation at each dynamic step.

A central observation regarding the effect of Ndyn and
Nc emerges; for a given number of coarse-computation
steps �i.e., 65 536 points� and fine-computation steps
�=Ndyn�Nf�, the amount of time addressed in each case in-
creases with increasing Ndyn �or decreasing Nf� as noted in
Table I. The fact that during the initial stages of each case,
there is a monotonic and a relatively rapid decrease �or in-
crease� in the concentration of A �or B� at the reactive site,
indicates that, initially, the forward reaction is selectively
preferred by KMC. More importantly, at the initial stages,
relatively much smaller time-step sizes are selected by KMC
due to the higher concentration of �A� �see Eqs. �4� and �5��,
while in the later stages, the probability of occurrence of
larger time steps is much higher. This fact is reflected in Fig.
10, which depicts the variation in the time-step size �evalu-
ated at the end of every Nf fine computations�, as a function
of the number of dynamic steps. Thus, for cases involving
large Nf �and therefore large Nc, for a given Mp�, where the
dynamic updates occur less frequently, smaller time-step
sizes are used over much larger chunks of computational
steps, leading to much smaller time coverage. In fact, for
the Ndyn=1 case, which represents the original CWM ap-
proach, the least time-coverage can be seen. Also, the depen-
dence of total-time coverage was very weakly dependent on

TABLE I. Values of various simulation parameters used for the
case when Mp=8 and Nf �Ndyn are constant.

Mp=8 Ndyn Nf Nc Total time �t�
N f �Ndyn=8192 32 256 2048 341.3

Nc�Ndyn=65536 8 1024 8192 264.0

2 4096 32768 120.2

1 8192 65536 66.8

FIG. 10. Variation in size of time step as a function of the
number of dynamical steps for �a� Ndyn=32 and �b� Ndyn=8.
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the choice of the random-number seed �for KMC�, and any
difference in the times were negligible for all practical pur-
poses.

The importance of Ndyn is shown by the insets of Figs. 8
and 9. One can observe clear differences in the overall shape
of the concentration variation as a function of Ndyn. Particu-
larly, for larger Ndyn, there are distinct oscillatory features �as
pointed out in the inset figures�, similar in nature to those
present in the fine trajectories �Fig. 6�, that are noticeably
absent in the other cases; in other words, if one were to
compare the CWM �Figs. 8�d� and 9�d�� and the dCWM
results, it is obvious that, in addition to larger time coverage,
trends characteristic of the concentration variations which
were not captured by the CWM approach are described by
the dCWM method.

Next, the role of nonoverlapping scales �SB� and Mp �for
a given Nf� in controlling the accuracy of the resulting tra-
jectories is examined. Table II lists the values of Mp, SB,
Ndyn, and Nc used in investigations for a specific value of
Nf�=256� as well as the number of overlapping scales �SO�.
As expected, there was a noticeable dependence of the total
time coverage on Ndyn �and Mp� as given in Table II. For
smaller values of Ndyn the dependence was much stronger

and, for large values of Ndyn ��32�, the total time-coverage
approached that of the full-fine simulation.

The variations in dCWM with respect to the amount of
very fine-scale fluctuations and coarser-scale oscillatory
trends were examined for different Nc �therefore different

FIG. 11. �a� Time variation in the �a� coarse and �b� fine com-
ponents of species A concentration for different values of the scale
filter for the Ndyn=2 dCWM trajectory.

FIG. 12. �a� Variation in the relative energy of different dCWM
trajectories as a function of Ndyn for three different values of the
scale filter. �b� Scale-energy variation of the benchmark signal; here
the number of excluded scales represents the value of the scale
filter.

TABLE II. Values of various simulation parameters used for the
case of Nf =256.

Total time
steps�65536 Ndyn Mp Nc SB Total time �t�

128 2 512 1 365.2

64 4 1024 2 350.0

Nf=256 32 8 2048 3 341.3

So=5�8−3� 16 16 4096 4 308.0

8 32 8192 5 250.4

4 64 16384 6 180.9

2 128 32768 7 83.6

1 256 65536 8 27.5
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SB�, Ndyn, and Mp. Recognizing the effectiveness of wavelets
as scale-filters, the contributions of different scales to the
composition of each trajectory can be examined via the pad-
ding technique discussed previously. For instance, the mean
trend of each trajectory can be filtered out by removing the
coarsest-scale contributions, enabling the quantification of
the fluctuations corresponding to the finer scales, or in con-
trast, the fine-scale fluctuations could be filtered out, while
retaining the larger-scale oscillatory contributions to the
overall trajectory. The following steps were used to examine
the effect of the various scales.

�1� Interpolating all trajectories using splines to ensure
equivalent time-step sizes. This is done since each trajectory
corresponds to different time-coverages and consequently
different time-step sizes. All resulting trajectories are now
resampled at the time-step size as that of the “Ndyn=1” case,
and leads to a one-to-one comparison between each dCWM
trajectory and the benchmark, for the time coverage of the
given dCWM trajectory.

�2� Next, the padding technique is invoked to scale sepa-
rate the finer and coarser information available for each tra-
jectory. For extracting “coarse” information, all coefficients
beyond a cutoff scale are set to zero, while the opposite is

done to obtain “fine” information. This allows the ability to
clearly demarcate the different scale contributions.

As an example of the above method, consider Figs. 11�a�
and 11�b�, which present the “Ndyn=128” trajectory of spe-
cies �A� when reconstructed selectively by inclusion of spe-
cific scales. Clearly, the resultant coarse trajectory �Fig.
11�a�� obtained by excluding all scales greater than 4 �24

=16� is �almost� devoid of any fluctuations, while the fre-
quency and magnitude of fluctuations increase with inclusion
of additional finer scales. The exact opposite behavior is seen
for the corresponding fine-components �Fig. 11�b��, with
maximum stationary fluctuations present when scale filter
�i.e., number of excluded scales� equals 4. Thus, in order to
characterize the quality of each dCWM trajectory, the re-
spective fine components obtained at very small values of the
scale filter �4–6�, were examined and the “energy” corre-
sponding to the transferred fine fluctuations was evaluated by
calculating the average intensity of the fluctuations for each
case. The average intensity was in turn, evaluated by calcu-
lating the square root of the sum of squares of the magni-
tudes of fluctuations over the time domain of each trajectory
and then averaging it over the total number of time steps.

FIG. 13. Time variation in the coarse components of concentration of species A for different values of Ndyn and Mp for a fixed value of
Nf =256 as obtained for scale filter equal to 10.
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Depending on the time coverage of the different dCWM
trajectories, the corresponding average intensity of the
benchmark trajectory was evaluated, thereby enabling the
quantification of energy transfer expressed as a ratio of the
corresponding dCWM intensity to the benchmark intensity
�see Fig. 12�a��. In Fig. 12�a�, for trajectories with Ndyn�8,
the energy was evaluated over 524 288 �219� points resa-
mpled at the Ndyn=1 time-step size, while 262 144, 131 072,
and 65 536 points were used for Ndyn=4, 2, and 1, respec-
tively. Also, note that for a given choice of Ndyn �and other
related parameters�, and a given value of the scale filter, the
calculated energies were very similar for different values of
the random-number seed �five different trajectories for each
case were considered�, and the standard deviation in the scale
energy was less than 1.0%. Figure 12�b� provides informa-
tion on the energy contained in each scale for the benchmark
trajectory evaluated over 524 288 points; this can be used for
the purposes of estimation of scale energy for the different
dCWM trajectories when used in conjunction with Fig.
12�a�.

As expected, Fig. 12�a� shows a strong correlation be-
tween the energy ratio and Ndyn, such that with increasing
Ndyn, there is a parallel increase in the energy of the corre-
sponding trajectories; in fact the energy of the Ndyn=128
trajectory is remarkably similar to the benchmark for the
three different scale filters given. Since the computational
cost for the fine method is the most expensive, one can relate
Mp �and Ndyn� in tandem with the ability of the correspond-
ing trajectories to emulate the benchmark, to be a measure of
the computational efficiency of the dCWM method. Obvi-
ously, the benchmark stochastic simulation is the most com-
putationally expensive calculation, while at the other end is
the nondynamic CWM simulation where Ndyn=1 �Mp=256�.

Figure 12�a� in conjunction with Table II, show that 65%
of the benchmark energy is replicated with a time coverage
of 90% of the benchmark time for one-eighth of the compu-
tational cost �Mp=8,Ndyn=32�. With a computational sav-
ings of a factor of 4, i.e., Mp=4, Ndyn=64, 85% of the bench-
mark energy is captured with a corresponding 92% time
coverage, while for Ndyn=2 or equivalently for half the com-
putational cost of the benchmark, there is almost 100% effi-
ciency. These results accentuate the fact that the quality of
the trajectories depends intimately on the choice of Ndyn, SB,
and Mp; an increase in fine computations �Ndyn�Nf� leads to
a marked improvement in the quality of the trajectory as
evidenced in Fig. 12�a� as well as in Fig. 13, which depicts
select dCWM “coarsened” trajectories devoid of the very-
fine “white-noise” components, and evaluated at scale filter
�10.

For large SB �i.e., scales beyond overlap�, the determinis-
tic coarse behavior dominates, thereby suppressing the

coarser-scale contributions of the fine method toward shap-
ing the trends of the dCWM trajectory. An equally important
reason for the dominance and suppression of either method is
the fact that there are �Mp−1��6 replacements of the fine-
method coefficients by the scaled coarse-method coefficients
at each scale, and at larger Mp, this effect is more pro-
nounced leading to considerable loss in transfer of the fine-
method information.

IV. CONCLUSIONS

This paper introduces and discusses the workings of the
wavelet based dCWM method, for coupling two or more
scale�s�-specific methods in a dynamic and seamless fashion
to realistically model any system that requires a temporal
multiscale representation. A simple, yet representative 1D
reaction diffusion process is examined in order to illustrate
the multiscale capabilities of the dCWM method. The results
clearly indicate that the dCWM method is capable of repro-
ducing many aspects of the true behavior of the simulated
system for a lower computational cost. The dCWM method
can be readily extended in a nontrivial yet a straightforward
way to model far more complex multiscale phenomena in a
computationally efficient fashion by combining different lev-
els of spatiotemporal description of the constituent degrees
of freedom. In addition, combining dCWM with other mul-
tiscale methods such as PIT �10� could lead to substantial
reduction in computational overhead. PIT is a technique
where the system is initially modeled by the coarse method;
next, the coarse trajectory of the system is broken up into a
series of smaller segments, with the initial conditions of each
segment serving as starting points for the fine method. Com-
puting the more accurate trajectories �by the fine method�
from these starting points are then done in parallel, till the
respective end points are reached. dCWM can be used as a
“speed-up” tool by employing it on each segment, thereby
getting accurate trajectories further reducing computational
cost.
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